ASCE/SEI and Functional Recovery

Presented at ICC CALBO Seismic Roundtable on July 25, 2019

Jennifer Goupil, P.E., F.SEI

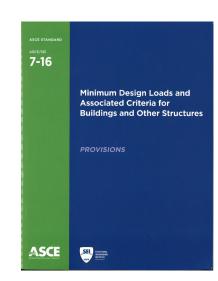
J. G. (Greg) Soules, P.E., S.E., P.Eng., SECB, F.SEI, F.ASCE

ASCE/SEI and FUNCTIONAL RECOVERY

- ASCE/SEI
 - Who we are and what we do
- ASCE 7
 - Standards Development and Adoption
- ASCE 7 and FUNCTIONAL RECOVERY
 - How we arrived here, and what is already included
 - FEMA P-58 and NEHRP 2020
 - Challenges
- PATHS to FUNCTIONAL RECOVERY

Who we are and what we do

What is ASCE 7?



ASCE 7 and adoption ICC Cycle

350 people + 6 years

ANSI Rules
Balanced Committee
Public Comment

ASCE 7 and adoption ICC Cycle

Standard versus Code

Standards (ASCE 7)

- How to design and construct variety of buildings/infrastructure

National Codes (IBC)

 Govern all aspects of buildings/infrastructure and construction by adopting Standards + Policy

State/Local Building Officials (AHJ)

- Adopt and <u>enforce</u> **Codes** to protect public health, safety, and welfare

ASCE 7 and FUNCTIONAL RECOVERY

Structural design for all loads (earthquake, snow, wind, ice, rain, etc.) considers two limit states:

- Serviceability No impairment of function, no repair required
- Safety Failure involving loss of function

Design criteria seeks to ensure:

- Serviceability routine loads, expected to occur many times during the life of a structure (continued function)
- Safety very low probability the ultimate state will be exceeded or that failure will occur
 under any loading

Simply stated:

- Structures should be useable and functional, nearly always
- Structures should protect safety

What are the current ASCE 7 goals?

Live, Snow, Wind

- Serviceable for 50-year loads
 - Note for tall buildings, it is common to accept temporary disruption of use due to wind during storms having a 10-year return period
- Safety for failure probability for any element
 - Risk Category II 1 in 100,000 years
 - Risk Category IV 1 in 200,000 years

Earthquake

- Serviceability
 - Risk Category II ~ 25 -50 years (depending on structure type)
 - Risk Category IV ~ 50-75 years (structure) ~500 years nonstructural
- Safety
 - Risk Category II 1 in 5,000 years
 - Risk Category IV 1 in 12,000 years

Some observations

- Serviceability goals for earthquake are comparable to those for wind, snow and other hazards
- Safety goals are two orders of magnitude poorer for earthquake than other hazards
 - Wind, snow, and other hazards
 High frequency, low variability small factors of safety provide higher amount of protection
 - Earthquakes

Low frequency, high variability – large factors of safety provide smaller amount of protection

***Protection is easily and economically obtained for most hazards, but is expensive and difficult to obtain for earthquakes

FUNCTIONALITY in ASCE 7

In addition to Serviceability and Safety defined in ASCE 7, Functionality is specified for RC IV:

Section 1.3.3 Functionality.

...Risk Category IV shall be designed ... to not prevent function of the facility immediately following the design level hazard events.

Some insights

FEMA P58 assessment of the adequacy of current codes:

- Typical buildings (RC II) in design earthquake (500-year)
 - Repair times 45-60 days
- Essential buildings (RC IV) in design earthquake
 - Repair times 30-45 days

NEHRP 2020 Part 3 Paper

	Performance Expectation	
Performance Measure	Design EQ	MCE
Risk Ca	tegory II – Office	
Repair Cost	10%	30%
Repair Time	45 days	150 days
Casualty Rate	1.0%	2.0%
Probability of Unsafe Placard	20%	40%
Repairability	95%	80%
Risk Category II – Healthcare	(Medical Office Building	g or Laboratory)
Repair Cost	20%	40%
Repair Time	60 days	180 days
Casualty Rate	1.0%	2.0%
Probability of Unsafe Placard	20%	40%
Repairability	85%	65%
Risk Category IV – Offic	e (Emergency Operation	ns Center)
Repair Cost	5%	15%
Repair Time	30 days	75 days
Casualty Rate	0.5%	1.5%
Probability of Unsafe Placard	10%	25%
Repairability	98%	90%
Risk Category I	V – Healthcare (Hospita	I)
Repair Cost	10%	20%
Repair Time	45 days	100 days
Casualty Rate	0.5%	1.5%
Probability of Unsafe Placard	10%	25%
Repairability	95%	85%

Is there really a problem?

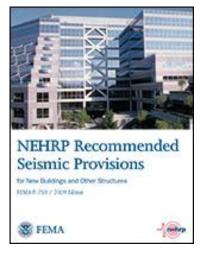
Occasional earthquakes

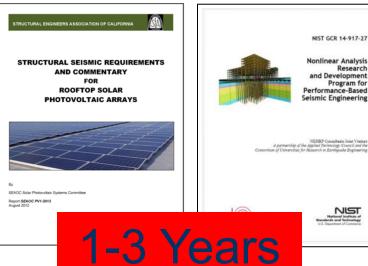
- 1971 San Fernando, 1979 Imperial Valley
- 1982 Morgan Hill, 1983 Coalinga, 1987 Whittier, 1989 Loma Prieta
- 1994 Northridge
- 2001 Nisqually
- >> Caused limited damage, and did not significantly affected city resilience.

Great earthquakes

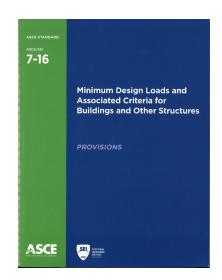
- 1906 San Francisco
- 1923 Tokyo
- 1964 Anchorage
- >> Caused near total destruction of the affected cities.
- >> Such earthquakes occur hundreds of years apart at any given location.

Challenges


- 1) The ASCE 7 standards committee has been reluctant to adopt explicit serviceability goals
 - Primary concern is economics (of the individual owner)


2) The ASCE 7 standards committee would likely be willing to develop <u>voluntary</u> criteria for *serviceability*

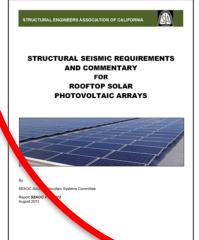
- 3) If voluntary *serviceability* goals were included in standards, communities will have to choose:
 - Whether to require this or not
 - What risk is acceptable

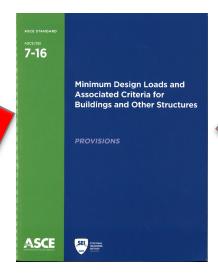

PATHS to FUNCTIONAL RECOVERY

Research

Program for

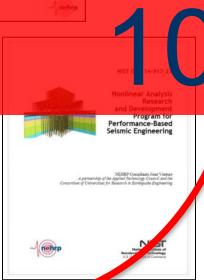
5-6 Years





PATHS to FUNCTIONAL RECOVERY





PATHS to FUNCTIONAL RECOVERY

ROOFTOP SOLAR

THANKYOU

Contact Jennifer Goupil jgoupil@asce.org

